

SCHACHTAUFBAUTEILE | SEPARATES DICHTUNGS- UND LASTAUSGLEICHS-SYSTEM **TOP SEAL**

Das Schachtaufbaumaterial TOP SEAL wird bauseits aufgezogen. Es besteht aus einem Dichtungselement und einem separaten mit Quarzsand gefülltem Lastausgleichselement. Schachtringe, -hälse und Abdeckplatten können jederzeit zerstörungsfrei getrennt und wieder zusammengesetzt werden.

- ✓ SU-M
- Mit integrierter Abdeckplatte
- ✓ DIN EN 1917 und DIN V 4034-1
- FBS-Qualitätrichtline im Nennweitenbereich von DN 1000 bis DN 1500

IHRE BESONDEREN VORTEILE

- ✓ Maximal CO₂-reduziert
- ✓ Dichtungs- und Lastausgleichselement getrennt
- Statisch und dynamisch hoch belastbar
- Betriebssicher durch zuverlässige und dauerhafte Dichtigkeit der Schachtelemente

TECHNISCHE DATEN

Technische Daten, zu allen Schachtausführungen sowie Aufbauteile, können den nachvollgenden Tabellen entnommen werden.

AUSFÜHRUNGEN

SCHACHTUNTERTEILE

SCHACHTUNTERTEIL MIT NACHTRÄGLICH EINGEBAUTER BETONRINNE

SCHACHTUNTERTEIL MIT KLINKERAUSBAU

MONOLITHISCHES SCHACHTUNTERTEIL

MONOLITHISCHES SCHACHTUNTERTEIL AUS ROTEM SCHMUTZWASSERBESTÄN-DIGEM HOCHLEISTUNGSBETON ≥ XA 3

SCHACHTUNTERTEIL MIT KUNSTSTOFF-AUSKLEIDUNG

SCHACHTUNTERTEILE MIT

KLINKERAUSBAU

- ✓ SU-M
- ISO 9001, DIN EN 1917 und DIN V 4034-1 sowie FBS-Qualitätsrichtlinie im Nennweitenbereich von DN 1000 bis DN 2000
- Alle genormten Dichtsysteme mit entsprechendem Lastausgleich

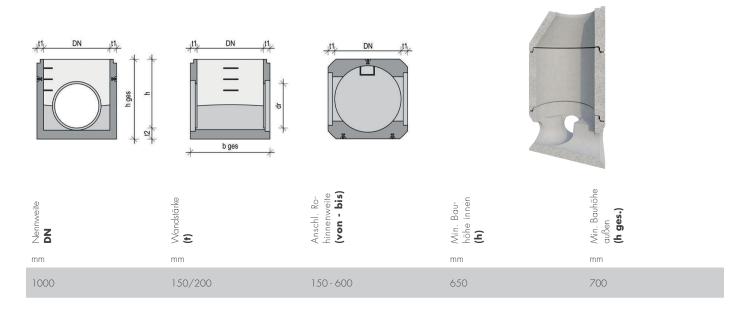
KLINKER-AUSBAU ERFÜLLT DIE ANFORDE-RUNG NACH DIN 4051

- ✓ In Handarbeit nach Kundenwunsch
- ✓ Hoher Widerstand gegen chemische Angriff
- ✓ Schmutzwasserbeständigkeit

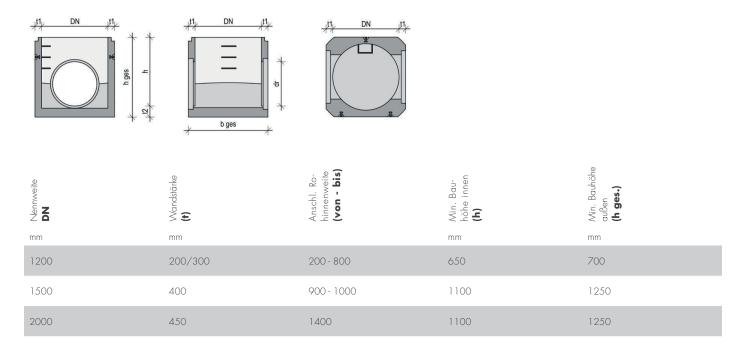
IHRE BESONDEREN VORTEILE

- Monolithisch hergestellt, dadurch nur wenige Arbeitsschritte auf der Baustelle notwendig
- ✓ Minimiert terminliche Risiken im Vorfeld
- Kurze Bauzeit und fristgerechte Lieferung
- Ausbau nach Kundenwunsch
- Strömungsoptimiertes Gerinne
- ✓ Sichere Schachtanschlüsse
- ✓ Variable Bauhöhe bis 3 Meter

BETONEIGENSCHAFTEN


- ✓ Hochleistungsbeton
- √ Wassereindringtiefe < 5 mm
 </p>
- ✓ Hohe Gefügedichte
- C 50/60

TECHNISCHE DATEN


Technische Daten können der nachfolgenden Tabelle entnommen werden.

TECHNISCHE DATEN

Achtung: Die Lage der Anker kann aufgrund der technischen Erfordernisse variieren.

Achtung: Die Lage der Anker kann aufgrund der technischen Erfordernisse variieren.

MONOLITHISCHES

SCHACHTUNTERTEIL

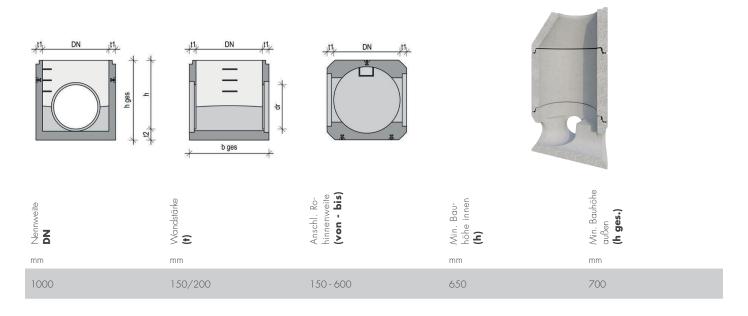
Schachtfertigteile aus Beton und Stahlbeton mit Kreisquerschnitt finden Anwendung im Bau von Abwasserleitungen und -kanäle. Wir fertigen unsere Schachtsysteme monolithisch. Je nach baulichen Erfordernissen werden die Bauteile individuell konstruiert und hergestellt. Dabei wird das Gerinne und die Auftrittsflächen in einem Herstellungsvorgang – inklusive dem Grundkörper –produziert. Jede von dem Kunden geforderte Gerinneform kann also regelwerkskonform ausgebildet werden und bietet so eine optimale Hydraulik, wie es ebenfalls auch bei Schachtsystemen aus schmutzwasserbeständigem Hochleistungsbeton und Polymerbeton üblich ist.

- ✓ SU-M
- V ISO 9001, DIN EN 1917 und DIN V 4034-1 sowie FBS-Qualitätsrichtlinie im Nennweitenbereich von DN 1000 bis DN 2000
- Alle genormten Dichtsysteme mit entsprechendem Lastausgleich

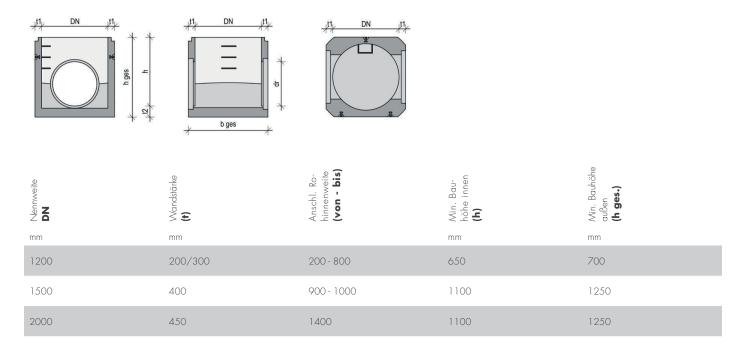
IHRE BESONDEREN VORTEILE

- Monolithisch hergestellt, dadurch nur wenige Arbeitsschritte auf der Baustelle notwendig
- ✓ Minimiert terminliche Risiken im Vorfeld
- Kurze Bauzeit und fristgerechte Lieferung
- Ausbau nach Kundenwunsch
- ✓ Strömungsoptimiertes Gerinne
- ✓ Sichere Schachtanschlüsse
- ✓ Variable Bauhöhe bis 3 Meter

BETONEIGENSCHAFTEN


- ✓ Hochleistungsbeton
- √ Wassereindringtiefe < 5 mm
 </p>
- ✓ Hohe Gefügedichte
- √ C 50/60

TECHNISCHE DATEN


Technische Daten können der nachfolgenden Tabelle entnommen werden.

TECHNISCHE DATEN

Achtung: Die Lage der Anker kann aufgrund der technischen Erfordernisse variieren.

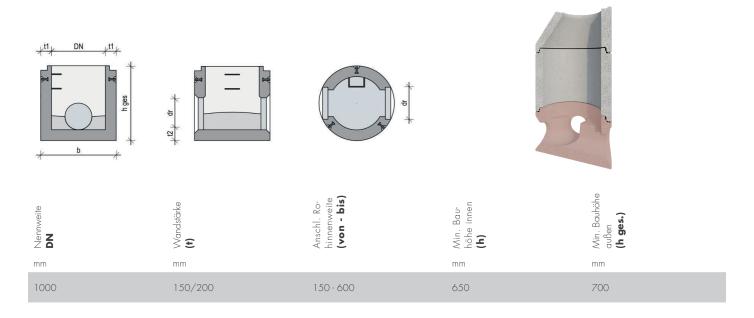
Achtung: Die Lage der Anker kann aufgrund der technischen Erfordernisse variieren.

MONOLITHISCHES SCHACHTUNTER-TEIL AUS ROTEM SCHMUTZWAS-SERBESTÄNDIGEM HOCHLEIS-TUNGSBETON ≥ XA 3

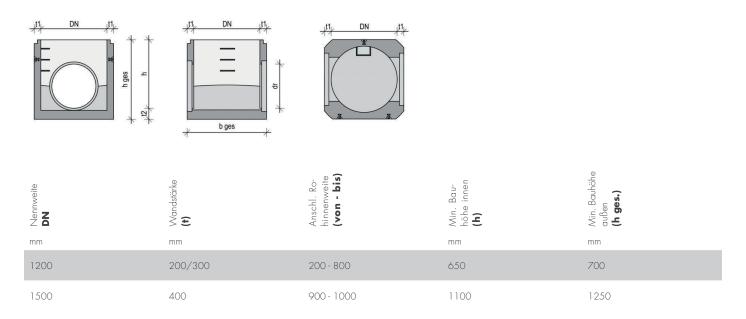
Ein Schachtsystem für die Zukunft aus einem roten, modernen schmutzwasserbeständigem Hochleistungsbeton (SWHB). Der Schmutzwasserschacht gilt als technische Weiterentwicklung zu dem klassischen Klinkerschacht und wurde von dem Institut für unterirdische Infrastruktur (IKT) in einem aufwendigen Prüfverfahren mit dem IKT-Siegel "gleichwertig mit Klinkerausbau" ausgezeichnet. Der Grundkörper wird im Gegensatz zum herkömmlichen Schacht aus SWHB Beton hergestellt, der die Anforderungen der DIN sowie der FBS-Qualitätsrichtlinie an die Druckfestigkeit, die Wassereindringtiefe, die Maßhaltigkeit sowie die Widerstandsfähigkeit gegenüber biogener Schwefelsäure deutlich übertrifft und damit Sicherheit auf der ganzen Linie verspricht.

- ✓ SU-M
- Aus einem modernen schmutzwasserbeständigem Hochleistungsbeton
- ISO 9001, DIN EN 1917 und DIN V 4034-1 sowie FBS-Qualitätsrichtlinie im Nennweitenbereich von DN 1000 bis DN 1500

IHRE BESONDEREN VORTEILE

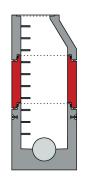

- Das Gerinne, die Berme sowie die Auftrittsflächen werden zusammen mit dem Grundkörper in einem Vorgang betoniert, sodass das gesamte Schachtunterteil aus säurewiderstandsfähigem Beton besteht.
- ✓ Je nach baulichen Erfordernissen werden die Bauteile individuell konstruiert und hergestellt, jede von Ihnen geforderte Gerinneform können wir regelwerkskonform ausbilden und so eine optimale Hydraulik gewährleisten.
- ✓ Schmutzwasserbeständig
- Monolithisch hergestellt, dadurch nur wenige Arbeitsschritte auf der Baustelle notwendig
- ✓ Minimiert terminliche Risiken im Vorfeld
- ✓ Kurze Bauzeit und fristgerechte Lieferung
- ✓ Strömungsoptimiertes Gerinne
- ✓ Sichere Schachtanschlüsse
- Leistungsstarke Alternative zum Schachtunterteil mit Klinkerausbau

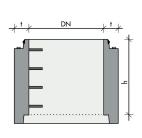
IHRE BESONDEREN VORTEILE


- Expositionsklasse XA3
- Schmutzwasserbeständiger Hochleistungsbeton
- √ Wassereindringtiefe < 1 mm
 </p>
- ✓ Hohe Gefügedichte
- \checkmark C 60/75

TECHNISCHE DATEN

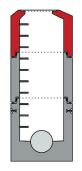
Achtung: Die Lage der Anker kann aufgrund der technischen Erfordernisse variieren.

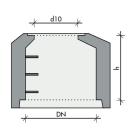



Achtung: Die Lage der Anker kann aufgrund der technischen Erfordernisse variieren.

SCHACHTRINGE

SR-M • DN 1000 – DN 2000 Ausgewiesene CO₂-Emission beziehen sich auf den Werkstoff Beton

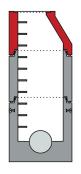

Nennweite (DN)	Bauhöhe (h)	Wandstärke (†)	Gewicht ca.	Anker	CO2-Emission
mm	mm	mm	to/Stk.	Stk. x to	kg/Stk.
1000	500	120	0,51	ohne	23,7
1000	500	150	0,65	ohne	30,3
1000	1000	120	1,02	ohne	47,5
1000	1000	150	1,30	ohne	60,5
1200	500	150	1,06	ohne	49,3
1200	1000	150	2,11	ohne	98,2
1500	500	150	1,28	3 x 5	59,6
1500	1000	150	2,56	3 x 5	119,1
2000	500	150	1,22	3 x 10	56,8
2000	1000	150	2,43	3 x 10	113,1

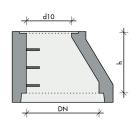


SCHACHTHÄLSE

SH-M • DN 1000

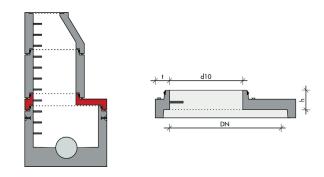
Schachtaufbau mit eingezogenem Einstieg Ausgewiesene CO₂-Emission beziehen sich auf den Werkstoff Beton




Nennweite (DN)	Bauhöhe (h)	Wandstärke (†)	Einsteigsöffnung (d10)	Gewicht ca.	Anker	CO2-Emission	
mm	mm	mm	mm	to/Stk.	Stk. x to	kg/Stk.	
1000	350	120	625	0,39	ohne	18,2	
1000	350	150	625	0,45	ohne	20,9	
1000	600	120	625	0,72	ohne	33,5	
1000	600	150	625	0,90	ohne	41,9	
1000	850	120	625	1,03	ohne	47,9	
1000	850	150	625	0,25	ohne	58,2	

SCHACHTHÄLSE

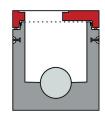
SH-M • DN 1000 – DN 1500
Schachtaufbau mit geradem Einstieg
Ausgewiesene CO₂-Emission beziehen sich auf den Werkstoff Beton

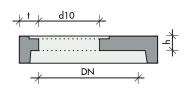


mm Nennweite (DN)	Bauhöhe (h)	sa Wandstärke (†)	Einsteigsöffnung (d10)	o O O O O O O O O O O O O O O O O O O O	Anker Anker Sik. x to	kg/Stk.	
1000	300	120	625	0,39	ohne	18,2	
1000	600	120	625	0,72	ohne	33,5	
1000	850	120	625	1,03	ohne	47,9	
1000	600	120	625	0,70	ohne	32,6	
1200	600	150	625	0,85	ohne	39,6	
1200	850	150	625	1,25	ohne	56,3	
1500	600	150	625	1,45	3 x 5	67,5	
1500	850	200	625	2,48	3 x 10	142,7	

ÜBERGANGSPLATTE

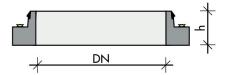
UE-MS • DN 1200 – DN 2000 Ausgewiesene CO₂-Emission beziehen sich auf den Werkstoff Beton




Nennweite (DN)	Ваиһöhe (h)	Wandstärke (†)	Einsteigsöffnung (d10)	Gewicht ca.	Anker	CO2-Emission	
mm	mm	mm	mm	to/Stk.	Stk. x to	kg/Stk.	
1200	250	150	1000	0,86	3 x 5	49,5	
1500	250	150	1000	1,10	3 x 5	63,3	
2000	250	150	1000	2,10	3 x 10	120,8	

ABDECKPLATTE

AP-M • DN 1000 – DN 2000 Ausgewiesene CO₂-Emission beziehen sich auf den Werkstoff Beton



Mennweite (DN)	Bauhöhe (h)	s Wandstärke (f)	Einsteigsöffnung (d10)	o O O O O O O O O O O O O O O O O O O O	Stk. x to	cO2-Emission	
1000	220	150	625	0,56	3 × 2,5	32,2	
1000	220	150	800	0,53	3 × 2,5	30,5	
1200	220	150	625	0,72	3 x 5	41,4	
1200	220	150	800	0,69	3 x 5	49,3	
1500	220	150	625	1,13	3 x 5	65,0	
1500	220	150	800	1,10	3 x 5	63,3	
2000	220	150	625	2,41	3 x 10	138,7	
2000	220	150	800	2,38	3 × 10	136,9	

FUSSAUFLAGERING

FAR-M • DN 1000 – DN 1500 Ausgewiesene CO₂-Emission beziehen sich auf den Werkstoff Beton

Mannweite (DN)	Bauhöhe (h)	a Wandstärke (✝)	o o o o o o o o o o o o o o o o o o o	Stk. x to	kg/Sik.	
1000	250	185	0,42	3 × 2,5	24,2	
1000	250	200	0,45	3 x 2,5	25,9	
1200	250	200	0,53	3 x 5	30,5	
1500	250	200	1.43	3 x 10	49.3	

SICHERHEITSSTEIGBÜGEL

STEIGBÜGEL FORM A DIN 19555 FORM A UND EN 13101

Sicherheitssteigbügel mit Stahlkern Klasse 1 Schwarze Kunststoffummantelung aus Polypropylen

Sicherheitssteigbügel mit Edelstahlkern Werkstoff 1.4541 – Klasse 1 Orange Kunststoffummantelung aus Polypropylen

Sicherheitssteigbügel mit Edelstahlkern Werkstoff 1.4571 – Klasse 1 Violette Kunststoffummantelung aus Polypropylen

SICHERHEITSSTEIGBÜGEL

STEIGBÜGEL FORM B DIN 19555

FORM B UND EN 13101

Sicherheitssteigbügel mit Stahlkern Klasse 1 Schwarze Kunststoffummantelung aus Polypropylen

Sicherheitssteigbügel mit Edelstahlkern Werkstoff 1.4541 – Klasse 1 Orange Kunststoffummantelung aus Polypropylen

Sicherheitssteigbügel mit Edelstahlkern Werkstoff 1.4571 – Klasse 1 Violette Kunststoffummantelung aus Polypropylen